Comparison of lignin peroxidase, horseradish peroxidase and laccase in the oxidation of methoxybenzenes.

نویسندگان

  • P J Kersten
  • B Kalyanaraman
  • K E Hammel
  • B Reinhammar
  • T K Kirk
چکیده

Lignin peroxidase oxidizes non-phenolic substrates by one electron to give aryl-cation-radical intermediates, which react further to give a variety of products. The present study investigated the possibility that other peroxidative and oxidative enzymes known to catalyse one-electron oxidations may also oxidize non-phenolics to cation-radical intermediates and that this ability is related to the redox potential of the substrate. Lignin peroxidase from the fungus Phanerochaete chrysosporium, horseradish peroxidase (HRP) and laccase from the fungus Trametes versicolor were chosen for investigation with methoxybenzenes as a homologous series of substrates. The twelve methoxybenzene congeners have known half-wave potentials that differ by as much as approximately 1 V. Lignin peroxidase oxidized the ten with the lowest half-wave potentials, whereas HRP oxidized the four lowest and laccase oxidized only 1,2,4,5-tetramethoxybenzene, the lowest. E.s.r. spectroscopy showed that this congener is oxidized to its cation radical by all three enzymes. Oxidation in each case gave the same products: 2,5-dimethoxy-p-benzoquinone and 4,5-dimethoxy-o-benzoquinone, in a 4:1 ratio, plus 2 mol of methanol for each 1 mol of substrate. Using HRP-catalysed oxidation, we showed that the quinone oxygen atoms are derived from water. We conclude that the three enzymes affect their substrates similarly, and that whether an aromatic compound is a substrate depends in large part on its redox potential. Furthermore, oxidized lignin peroxidase is clearly a stronger oxidant than oxidized HRP or laccase. Determination of the enzyme kinetic parameters for the methoxybenzene oxidations demonstrated further differences among the enzymes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of lignin peroxidase, horseradish peroxidase and laccase in th6 oxidation of methoxybenzenes

Philip J. KERSTEN,* 11 B. KALYANARAMAN,t Kenneth E. HAMMEL,4 Bengt REINHAMMAR§ and T. Kent KIRK*¶ * Forest Products Laboratory, USDA Forest Service, Madison, WI 53705 and Department of Bacteriology, University of Wisconsin, Madison, WI 53706, tNational Biomedical ESR Center, Medical College of Wisconsin, Milwaukee, WI 53226, $Department of Chemistry, SUNY College of Environmental Sciences and F...

متن کامل

Novel multienzyme oxidative biocatalyst for lignin bioprocessing.

A novel multienzyme biocatalyst, based on coimmobilization of the laccase and horseradish peroxidase by cross linking and layer-by-layer coating with polyelectrolyte, was designed, synthesized and applied at the development of an oxidative cascade process on lignin. The efficiency and specificity of the new LbL-multienzyme system, the occurrence of a synergy of the co-immobilized enzymes, the l...

متن کامل

Oxidation of methoxybenzenes by manganese peroxidase and by Mn3+.

Manganese peroxidase, produced by some white-rot fungi during lignin degradation, catalyzes the oxidation of Mn2+ to Mn3+. Whereas Mn3+ is known to oxidize phenolic compounds, its role in lignin degradation is not clear. We have used a series of methoxybenzenes with E1/2 values of 1.76-0.81 V (vs saturated calomel electrode) to investigate the oxidizing ability of Mn3+ chelates generated chemic...

متن کامل

Initial steps of ferulic acid polymerization by lignin peroxidase.

The major products of the initial steps of ferulic acid polymerization by lignin peroxidase included three dehydrodimers resulting from beta-5' and beta-beta'coupling and two trimers resulting from the addition of ferulic acid moieties to decarboxylated derivatives of beta-O-4'- and beta-5'-coupled dehydrodimers. This is the first time that trimers have been identified from peroxidase-catalyzed...

متن کامل

Determination of lignin-modifying enzymes (LMEs) in Hyphodermella species using biochemical and molecular techniques

White-rot basidiomycetes are one of the most important lignolytic microorganisms. These fungi have been reported to secrete three main classes of lignin degrading enzymes: lignin peroxidases (LiPs), manganese peroxidases (MnPs) and laccases. In this study, for the first time the lignin degrading capability of two plant pathogens i.e. Hyphodermella rosae and H. corrugata was evaluated using both...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Biochemical journal

دوره 268 2  شماره 

صفحات  -

تاریخ انتشار 1990